Restrained condition on double Roman dominating functions

نویسندگان

چکیده

We continue the study of restrained double Roman domination in graphs. For a graph $G=\big{(}V(G),E(G)\big{)}$, dominating function $f$ is called (RDRD function) if subgraph induced by $\{v\in V(G)\mid f(v)=0\}$ has no isolated vertices. The number number) $\gamma_{rdR}(G)$ minimum weight $\sum_{v\in V(G)}f(v)$ taken over all RDRD functions $G$. first prove that problem computing $\gamma_{rdR}$ NP-hard even for planar graphs, but it solvable linear time when restricted to bounded clique-width graphs such as trees, cographs and distance-hereditary Relationships between some well-known parameters $\gamma_{r}$, $\gamma$ $\gamma_{rR}$ are investigated this paper bounding from below above involving general respectively. $\gamma_{rdR}(T)\geq n+2$ any tree $T\neq K_{1,n-1}$ order $n\geq2$ characterize family trees attaining lower bound. characterization with small numbers given paper.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the restrained Roman domination in graphs

A Roman dominating function (RDF) on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex v for which f(v) = 0, is adjacent to at least one vertex u for which f(u) = 2. The weight of a Roman dominating function f is the value f(V (G)) = ∑ v∈V (G) f(v). The Roman domination number of G, denoted by γR(G), is the minimum weight of an RDF on G. For a given graph,...

متن کامل

Roman dominating influence parameters

A function f : V (G) → {0, 1, 2} is a Roman dominating function for a graph G = (V,E) if for every vertex v with f(v) = 0, there exists a vertex w ∈ N(v) with f(w) = 2. Emperor Constantine had the requirement that an army or legion could be sent from its home to defend a neighboring location only if there was a second army which would stay and protect the home. Thus, there are two types of armi...

متن کامل

Bounds on the restrained Roman domination number of a graph

A {em Roman dominating function} on a graph $G$ is a function$f:V(G)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}A {em restrained Roman dominating}function} $f$ is a {color{blue} Roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} The wei...

متن کامل

On Roman, Global and Restrained Domination in Graphs

In this paper, we present new upper bounds for the global domination and Roman domination numbers and also prove that these results are asymptotically best possible. Moreover, we give upper bounds for the restrained domination and total restrained domination numbers for large classes of graphs, and show that, for almost all graphs, the restrained domination number is equal to the domination num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics and Computation

سال: 2023

ISSN: ['1873-5649', '0096-3003']

DOI: https://doi.org/10.1016/j.amc.2022.127554